-
Feng, C.X.; Broggi, M.; Hu, Y.; Faes, M.G.R.; Beer, M.
(2025):
Interval Fields for Geotechnical Engineering Uncertainty Analysis under Limited Data,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, in press
-
Behrensdorf, J.; Broggi, M.; Beer, M.
(2024):
Interval Predictor Model for the Survival Signature using Monotone Radial Basis Functions,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, in press.
-
Bittner, M.; Broggi, M.; Beer, M
(2024):
Efficient reliability analysis of stochastic dynamic first-passage problems by probability density evolution analysis with subset supported point selection,
Engineering Structures, 312, Article 118210
-
Bittner, M.; Fritsch, L.; Hirzinger, B.; Broggi, M.; Beer, M.
(2024):
Efficient time-dependent reliability analysis for a railway bridge model,
XII. International Conference on Structural Dynamics, Journal of Physics: Conference Series 2647, Article 062002
DOI:
10.1088/1742-6596/2647/6/062002
-
Ding, C.; Dang, C.; Broggi, M.; Beer, M.
(2024):
Estimation of response expectation bounds under parametric p-boxes by combining Bayesian global optimization with unscented transform,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 10(2), Article 04024017
DOI:
10.1061/AJRUA6/RUENG-1169
-
Ding, C.; Wei, P.F.; Shi, Y.; Liu, J.X.; Broggi, M.; Beer, M.
(2024):
Sampling and active learning methods for network reliability estimation using K-terminal spanning tree,
Reliability Engineering & System Safety, 250, Article 110309
DOI:
10.1016/j.ress.2024.110309
-
Grashorn, J.; Broggi, M.; Ludovic, C.; Beer, M.
(2024):
Efficiency comparison of MCMC and Transport Map Bayesian posterior estimation for structural health monitoring,
Mechanical Systems and Signal Processing, 216, Article 111440
DOI:
10.1016/j.ymssp.2024.111440
-
Shi, Y.; Behrensdorf, J.; Zhou, J.Y.; Hu, Y.; Broggi, M.; Beer, M.
(2024):
Network Reliability Analysis through Survival Signature and Machine Learning Techniques,
Reliability Engineering and System Safety, 242, Article 109806
DOI:
10.1016/j.ress.2023.109806
-
Ding, C.; Dang, C.; Valdebenito, M.A.; Faes, M.G.R.; Broggi, M.; Beer, M.
(2023):
First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach,
Mechanical Systems and Signal Processing, 185, Article 109775.
DOI:
10.1016/j.ymssp.2022.109775
-
Feng, C.X.; Faes, M.; Broggi, M.; Dang, C.; Yang, J.S.; Zheng, Z.B.; Beer, M.
(2023):
Application of interval field method to the stability analysis of slopes in presence of uncertainties,
Computers and Geotechnics, 153, Article 105060.
DOI:
10.1016/j.compgeo.2022.105060
-
Grashorn, J.; Urrea-Quintero, J.-H.; Broggi, M.; Chamoin, L.; Beer, M.
(2023):
Transport map Bayesian parameter estimation for dynamical systems,
Proceedings in Applied Mathematics and Mechanics, 23(1), Article e202200136
DOI:
10.1002/pamm.202200136
-
Persoons, A.; Wei, P.F.; Broggi, M.; Beer, M.
(2023):
A new reliability method combining adaptive Kriging and active variance reduction using multiple importance sampling,
Structural and Multidisciplinary Optimization, 66, Article 144.
DOI:
10.1007/s00158-023-03598-6
-
Winnewisser, N.R.; Salomon, J.; Broggi, M.; Beer, M
(2023):
The Concept of Diagonal Approximated Signature: New Surrogate Modeling Approach for Continuous-State Systems in the Context of Resilience Optimization,
Disaster Prevention and Resilience, 2(2):4.
DOI:
10.20517/dpr.2023.03
-
Faes, M.G.R-; Broggi, M.; Chen, G., Phoon, K.K.; Beer M.
(2022):
Distribution-free P-box processes based on translation theory: definition and simulation,
Probabilistic Engineering Mechanics, 69, Article 103287.
DOI:
10.1016/j.probengmech.2022.103287
-
Faes, M.G.R.; Broggi, M.; Spanos, P.D.; Beer, M.
(2022):
Elucidating appealing features of differentiable auto-correlation functions: a study on the modified exponential kernel,
Probabilistic Engineering Mechanics, 69, Article 103269.
DOI:
10.1016/j.probengmech.2022.103269
-
Kitahara, M.; Bi, S.F.; Broggi, M.; Beer, M.
(2022):
Nonparametric Bayesian stochastic model updating with hybrid uncertainties,
Mechanical Systems and Signal Processing, 163, Article 108195.
-
Kitahara, M.; Song, J.W.; Wei, P.F.; Broggi, M.; Beer, M.
(2022):
A distributionally robust approach for mixed aleatory and epistemic uncertainties propagation,
AIAA Journal, in press.
-
Kitahara, M.;Bi, S.F.; Broggi, M.; Beer, M.
(2022):
Distribution-free stochastic model updating of dynamic systems with parameter dependencies,
Structural Safety, 97, Article 102227
-
Lye, A.; Kitahara, M.; Broggi, M.; Patelli, E.
(2022):
Robust optimization of a dynamic Black-box system under severe uncertainty: A distribution-free framework,
Mechanical Systems and Signal Processing, 167, Article 108522.
-
Salomon, J.; Behrensdorf, J.; Winnewisser, N.; Broggi, M.; Beer, M.
(2022):
Multidimensional Resilience Decision-Making for Complex and Substructured Systems,
Resilient Cities and Structures, 1, 61–78.
DOI:
10.1016/j.rcns.2022.10.005
-
Bai, Y.T.; Li, Y.S.; Tang, Z.Y.; Bittner, M.; Broggi, M.; Beer, M.
(2021):
Seismic collapse fragility of low-rise steel moment frames with mass irregularity based on shaking table test,
Bulletin of Earthquake Engineering.
DOI:
10.1007/s10518-021-01076-2
-
Behrensdorf, J.; Regenhardt, T.-E.; Broggi, M.; Beer, M.
(2021):
Numerically efficient computation of the survival signature for the reliability analysis of large networks,
Reliability Engineering and System Safety, 216, Article 107935.
DOI:
10.1016/j.ress.2021.107935
-
Jerez, D.J.; Jensen, H.A.; Beer, M.; Broggi, M.
(2021):
Contaminant Source Identification in Water Distribution Networks: A Bayesian Framework,
Mechanical Systems and Signal Processing, 159, Article 107834.
DOI:
https://doi.org/10.1016/j.ymssp.2021.107834
-
Kitahara, M.; Bi, S.F.; Broggi, M.; Beer, M.
(2021):
Bayesian Model Updating in Time Domain with Metamodel-based Reliability Method,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(3), Article 04021030.
-
Kitahara, M.; Broggi, B.; Beer, M
(2021):
Residual seismic performance estimation of seismic-isolated bridges based on model updating using approximate Bayesian computation,
Journal of Japan Society of Civil Engineers, part A1 (Structural Engineering & Earthquake Engineering), 77, I_61–I_70.
-
Salomon, J.; Winnewisser, N.; Wei, P.F.; Broggi, M.; Beer, M.
(2021):
Efficient Reliability Analysis of Complex Systems in Consideration of Imprecision,
Reliability Engineering and System Safety, 216, Article 107972.
DOI:
10.1016/j.ress.2021.107972
-
Valdebenito, M.A.; Wei, P.F.; Song, J.W.; Beer, M.; Broggi, M.
(2021):
Failure Probability Estimation of a Class of Series Systems by Multidomain Line Sampling,
Reliability Engineering and System Safety, 213, Article 107673.
-
Yang, L.C.; Bi, S.F.; Faes, M.G.R.; Broggi, M.; Beer, M.
(2021):
Bayesian inversion for imprecise probabilistic models using a novel entropy-based uncertainty quantification metric,
Mechanical Systems and Signal Processing, 162, Article 107954.
-
Kitahara, M.; Broggi, M.; Beer, M.
(2020):
Efficient seismic performance estimation method by surrogate modeling based on adaptive Kriging and Markov chain Monte Carlo,
Journal of Japan Society of Civil Engineers, part A2 (Applied Mechanics), 76, 75–86.
-
Mi, J.H, Beer, M.; Li, Y.F.; Broggi, M.; Cheng, Y.H.
(2020):
Reliability and Importance Analysis of Uncertain System with Common Cause Failures Based on Survival Signature,
Reliability Engineering and System Safety, 201, Article 106988.
DOI:
https://doi.org/10.1016/j.ress.2020.106988
-
Mi, J.H; Li, Y.F.; Beer, M.; Broggi, M.; Cheng, Y.H.
(2020):
Importance measure of probabilistic common cause failures under system hybrid uncertainty based on bayesian network,
Maintenance and reliability, 22 (1), 112–120.
DOI:
https://doi.org/10.17531/ein.2020.1.13
-
Behrensdorf, J.; Broggi, M.; Beer, M.
(2019):
Reliability analysis of networks interconnected with copulas,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 5(4), Article 041006.
DOI:
10.1115/1.4044043
-
Bi, S.F.; Broggi, M.; Wei, P.F.; Beer, M.
(2019):
The Bhattacharyya distance: enriching the P-box in stochastic sensitivity analysis,
Mechanical Systems and Signal Processing, 129, pp. 265-281.
DOI:
10.1016/j.ymssp.2019.04.035
-
Faes, M.; Broggi, M.; Patelli, E.; Govers, Y.; Mottershead, J.; Beer, M.; Moens, D.
(2019):
A multivariate interval approach for inverse uncertainty quantification with limited experimental data,
Mechanical Systems and Signal Processing, 118, 534–548.
DOI:
10.1016/j.ymssp.2018.08.050
-
Faes, M.; Sadeghi, J.; Broggi, M.; De Angelis, M.; Patelli, E.; Beer, M.; Moens, D.
(2019):
On the robust estimation of small failure probabilities for strong non-linear models,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 5, Article 041007.
DOI:
10.1115/1.4044044
-
He, L.X.; Gomes, A.T.; Broggi, M.; Beer, M.
(2019):
Failure Analysis of Soil Slopes with Advanced Bayesian Networks,
Periodica Polytechnica Civil Engineering.
DOI:
10.3311/PPci.14092
-
He, L.X.; Wang, L.; Beer, M.; Liu, Y.; Broggi, M.; Bi, S.F.
(2019):
Estimation of failure probability in a braced excavation by Bayesian networks integrating with model updating approaches,
Underground Space, 5(4), 315–323.
-
Miro, S.; Willeke, T.; Broggi, M.; Seume, J.R.; Beer, M.
(2019):
Reliability Analysis of an Axial Compressor Based on One-Dimensional Flow Modeling and Survival Signature,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 5(3), art. no. 031003.
DOI:
10.1115/1.4043150
-
Salomon, J.; Broggi, M.; Kruse, S.; Weber, S.; Beer, M.
(2019):
Resilience Decision-Making Method For Complex Systems,
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 6(2), Article 020901.
| Datei |
DOI:
10.1115/1.4044907
-
Song, J.W.; Wei, P.F.; Valdebenito, M.; Bi, S.F.; Broggi, M.; Beer, M.; Lei, Z.X.
(2019):
Generalization of non-intrusive imprecise stochastic simulation for mixed uncertain variables,
Mechanical Systems and Signal Processing, 134, 106316, 17 pages.
-
Wei, P.; Song, J.; Bi, S.; Broggi, M.; Beer, M.; Lu, Z.; Yue, Z.
(2019):
Non-intrusive stochastic analysis with parameterized imprecise probability models: II. Reliability and rare events analysis,
Mechanical Systems and Signal Processing, 126:227-247.
DOI:
10.1016/j.ymssp.2019.02.015
-
Wei, P.F.; Song, J.W.; Bi, S.F.; Broggi, M.; Beer, M.; Lu, Z.Z.; Yue, Z.F.
(2019):
Non-intrusive stochastic analysis with parameterized imprecise probability models: I. Performance estimation,
Mechanical Systems and Signal Processing, 124, 349-368.
DOI:
10.1016/j.ymssp.2019.01.058
-
Bi, S.F.; Broggi, M.; Beer, M.
(2018):
The role of the Bhattacharyya distance in stochastic model updating,
Mechanical Systems and Signal Processing, 117: 437-452.
DOI:
10.1016/j.ymssp.2018.08.017
-
Rocchetta, R.; Broggi, M.; Huchet, Q.; Patelli, E.
(2018):
On-line Bayesian model updating for structural health monitoring,
Mechanical Systems and Signal Processing; 103: 174-195.
DOI:
10.1016/j.ymssp.2017.10.015
-
Rocchetta, R.; Broggi, M.; Patelli, E.
(2018):
Do we have enough data? Robust reliability via uncertainty quantification,
Applied Mathematical Modelling, 54: 710-721.
DOI:
10.1016/j.apm.2017.10.020
-
Jiang, Y.B.; Luo, J.; Beer, M.; Patelli, E.; Broggi, M.; He, Y.H.; Zhang, J.R.
(2017):
Multiple response surfaces method with advanced classification of samples for structural failure function fitting,
Structural Safety; 64: 87-97.
DOI:
10.1016/j.strusafe.2016.10.002
-
Patelli, E.; Govers, Y.; Broggi, M.; Martins Gomes, H.; Link, M.; Mottershead, J.
(2017):
Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data,
Archive of Applied Mechanics, Volume 87, Issue 5, pp 905–925.
DOI:
10.1007/s00419-017-1233-1
-
Evans, Ll.M.; Arregui-Mena, J.D.; Mummery, P.M.; Akers, R.; Surrey, E.; Shterenlikht, A.; Broggi, M.; Margetts, L.
(2016):
Use of massively parallel computing to improve modelling accuracy within the nuclear sector,
The International Journal of Multiphysics, 10, 2.
DOI:
10.21152/1750-9548.10.2.215
-
Rocchetta, R.; Patelli, E.; Broggi, M.; Schewe, S.
(2016):
Robust probabilistic risk/safety analysis of complex systems and critical infrastructures,
Reliability Engineering and System Safety, 136, 47-61.
-
Venturini, Tiziano; Trefolini, Emanuele; Patelli, Edoardo; Broggi, Matteo; Tuliani, Giacomo; Disperati, Leonardo
(2016):
Mapping slope deposits depth by means of cluster analysis: a comparative assessment,
Rendiconti online della societa geologica italiana, Vol. 39/2016: 47-50.
DOI:
10.3301/ROL.2016.44
-
Patelli, E.; Alvarez, D. A.; Broggi, M.; de Angelis, M.
(2015):
Uncertainty Management in Multidisciplinary Design of Critical Safety Systems,
Journal of Aerospace Information Systems; 12(1): 140-169.
-
Patelli, E.; Murat Panayirci, H.; Broggi, M.; Goller, B.; Beaurepaire, P.; Pradlwarter, H. J.; Schuëller, G. I.
(2012):
General purpose software for efficient uncertainty management of large finite element models,
Finite Elements in Analysis and Design; 51(1): 31—48.
-
Zio, E.; Broggi, M.; Golea, L. R.; Pedroni, N.
(2012):
Failure and reliability predictions by infinite impulse response locally recurrent neural networks,
Chemical Engineering Transactions; 26: 117—122.
-
Broggi, M.; Calvi, A.; Schuëller, G.
(2011):
Reliability assessment of axially compressed composite cylindrical shells with random imperfections,
International Journal of Structural Stability and Dynamics; 11(2): 215—236.
DOI:
10.1142/S0219455411004063
-
Broggi, M.; Schuëller, G.
(2011):
Efficient modeling of imperfections for buckling analysis of composite cylindrical shells,
Engineering Structures; 33(5): 1796—1806.
-
Goller, B.; Broggi, M.; Calvi, A.; Schuëller, G.
(2011):
A stochastic model updating technique for complex aerospace structures,
Finite Elements in Analysis and Design; 47(7): 739—752.
-
Zio, E.; Broggi, M.; Pedroni, N.
(2009):
Nuclear reactor dynamics on-line estimation by Locally Recurrent Neural Networks,
Progress in Nuclear Energy; 51(3): 573—581.
-
Zio, E.; Pedroni, N.; Broggi, M.; Golea, L. R.
(2009):
Modelling the dynamics of the lead bismuth eutectic experimental accelerator driven system byan infinite impulse response locally recurrent neural network,
Nuclear Engineering and Technology; 41(10): 1293—1306.