Publikationen und Vorträge von Dr.-Ing. Marco Behrendt

Journal-Artikel

  • Behrendt, M.; Dang, C.; Beer, M. (2024): Data-driven and physics-based interval modelling of power spectral density functions from limited dataMechanical Systems and Signal Processing, 208, Article 111078
    DOI: 10.1016/j.ymssp.2023.111078
  • Behrendt, M.; Dang, C.; Faes, M.G.R.; Valdebenito, M.A.; Beer, M. (2024): Structural reliability analysis using imprecise evolutionary power spectral density functionsXII. International Conference on Structural Dynamics, Journal of Physics: Conference Series, 2647, 062003
    DOI: 10.1088/1742-6596/2647/6/062003
  • Behrendt, M.; Lyu, M.Z.; Luo, Y.; Chen, J.B.; Beer, M. (2024): Failure probability estimation of dynamic systems employing relaxed power spectral density functions with dependent frequency modeling and samplingProbabilistic Engineering Mechanics, 75, Article 103592
    DOI: 10.1016/j.probengmech.2024.103592
  • Bittner, M.; Behrendt, M.; Beer, M. (2024): Relaxed evolutionary power spectral density functions: A probabilistic approach to model uncertainties of non-stationary stochastic signalsMechanical Systems and Signal Processing, 211, Article 111210
    DOI: 10.1016/j.ymssp.2024.111210
  • Behrendt, M.; de Angelis, M.; Beer, M. (2023): Uncertainty propagation of missing data signals with the interval discrete Fourier transformASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 9(3), Article 04023022
    DOI: 10.1061/AJRUA6.RUENG-1048
  • Behrendt, M.; Faes, M.G.R.; Valdebenito, M.A.; Beer, M. (2023): Estimation of an imprecise power spectral density function with optimised bounds from scarce data for epistemic uncertainty quantificationMechanical Systems and Signal Processing, 189, Article 110072.
    DOI: 10.1016/j.ymssp.2022.110072
  • Behrendt, M.; Bittner, M.; Comerford, L.; Beer, M.; Chen, J.B. (2022): Relaxed Power Spectrum Estimation from Multiple Data Records utilising Subjective ProbabilitiesMechanical Systems and Signal Processing, 165, Article 108346.
    DOI: 10.1016/j.ymssp.2021.108346
  • Behrendt, M.; de Angelis, M.; Comerford, L.A.; Zhang, Y.J.; Beer, M. (2022): Projecting interval uncertainty through the discrete Fourier transform: an application to time signals with poor precisionMechanical Systems and Signal Processing, Volume 172, 1 June 2022, 108920.
    DOI: 10.1016/j.ymssp.2022.108920
  • Behrendt, M.; Kitahara, M.; Kitahara, T.; Comerford, L.; Beer, M. (2022): Data-driven reliability assessment of dynamic structures based on power spectrum classificationEngineering Structures, 268, 114648.
    DOI: 10.1016/j.engstruct.2022.114648

Konferenzbeiträge

  • Behrendt, M.; Bittner, M.; Beer, M. (2022): Stochastic process generation from relaxed power spectra utilising stochastic harmonic functionsProceedings of the 8th International Symposium on Reliability Engineering and Risk Management (ISRERM 2022), Hannover, Germany.
    DOI: 10.3850/978-981-18-5184-1_MS-01-220-cd
  • Behrendt, M.; de Angelis, M.; Comerford, L.; Beer, M. (2022): Assessing the severity of the missing data problem with the interval DFT algorithmProceedings of the 32nd European Safety and Reliability Conference (ESREL 2022), Dublin, Ireland.
    DOI: 10.3850/978-981-18-5183-4_S14-05-243-cd
  • Behrendt, M.; Faes, M.G.R.; Valdebenito, M.A.; Beer, M. (2022): Capturing Epistemic Uncertainties in the Power Spectral Density for Limited Data SetsProbabilistic Safety Assessment and Management PSAM 16, Honolulu, USA. Weitere Informationen
  • Behrendt, M.; Kitahara, M.; Kitahara, T.; Comerford, L.; Beer, M. (2022): Classification of power spectra from data sets with high spectral variance for reliability analysis of dynamic structuresProceedings of the 8th International Symposium on Reliability Engineering and Risk Management (ISRERM 2022)
    DOI: 10.3850/978-981-18-5184-1_MS-11-160-cd
  • Bittner, M.; Behrendt, M.; Behrensdorf, J.; Beer, M. (2022): Epistemic Uncertainty Quantification of Localised Seismic Power Spectral DensitiesProbabilistic Safety Assessment and Management PSAM 16, Honolulu, USA. Weitere Informationen
  • De Angelis, M.; Behrendt, M.; Comerford, L.; Zhang, Y.; Beer, M. (2021): Forward interval propagation through the discrete Fourier transformThe 9th international workshop on Reliable Engineering Computing
    arXiv: arXiv:2012.09778
  • Behrendt, M.; Bittner, M.; Comerford, L.; Broggi, M.; Beer, M. (2020): Parameter Investigation of Relaxed Uncertain Power Spectra for Stochastic Dynamic SystemsProceedings of the XI International Conference on Structural Dynamics (EURODYN 2020), Athens, Greece.
    DOI: 10.47964/1120.9311.18861
  • Behrendt, M., Comerford, L., Beer, M. (2019): Development of a Relaxed Stationary Power Spectrum using Imprecise Probabilities with Application to High-rise Buildings.IEEE Symposium Series on Computational Intelligence (SSCI).
    DOI: 10.1109/SSCI44817.2019.9002899
  • Behrendt, M., Comerford, L., Beer, M., (2019): Relaxed Stationary Power Spectrum Model Using Imprecise ProbabilitiesCOMPDYN Proceedings, 1, pp. 592-599.
    DOI: 10.7712/120119.6941.19045
  • Behrendt, M.; Comerford, L.; Beer, M. (2019): Stochastic Processes Identification from Data Ensembles via Power Spectrum Classification.13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13).
    DOI: 10.22725/ICASP13.407
  • Behrendt, M.; Punurai, W.; Beer, M. (2018): Synchronized Load Quantification from Multiple Data Records for Analysing High-rise Buildings7th Asia Conference on Earthquake Engineering, 22-25 November 2018, Bangkok, Thailand.
    DOI: 10.15488/4957
  • Behrendt, M.; Brandt, S.; Eckert, C. (2016): Optimierung von Gebietszerlegungen mit Hilfe der Partikelschwarmoptimierung28. Forum Bauinformatik, Hannover, Deutschland.