Recent Advances in Hybrid Vibration-Control Systems

verfasst von
Mohammad H. Stanikzai, Said Elias, Yunbyeong Chae
Abstract

A detailed literature review of the recent advances in hybrid vibration-control systems was presented in this article. In the literature, a combination of two or more vibration-control mechanisms, such as passive, active, and semiactive schemes, are defined as a hybrid vibration-control system. This review focused on seismic and wind response mitigation of structures using hybrid vibration-control devices. It started with the historical background of vibration-control systems and categorized hybrid control schemes within a proper frame of references. A detailed literature review on theoretical studies, experimental investigations, and real-life applications of hybrid vibration-control systems was presented. Specifically, this review presented the development in hybrid vibration-control schemes such as passive-passive, semiactive-passive, and active-passive systems. Active-passive damping devices combine the reliability, robustness, and low cost of viscoelastic damping with high-performance, model-selective, and adaptive piezoelectric active control. The semiactive-passive system is a combined system of semiactive damping devices and passive dampers. The passive-passive system consists of two or more passive damping devices. The review shed light on the pros and cons of each of hybrid vibration-control systems and provided the scope of future research for more robust vibration control, which involves dealing with limitations such as weight, size, cost, maintenance, and design obstacles of hybrid vibration-control systems.

Externe Organisation(en)
University of Twente
Typ
Artikel
Journal
Practice Periodical on Structural Design and Construction
Band
27
Publikationsdatum
08.2022
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
Elektronische Version(en)
https://doi.org/10.1061/(ASCE)SC.1943-5576.0000685 (Zugang: Geschlossen)